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Viscous rotational s t agna tion-point flow 

By ALAN S. HERSHT 
University of California, Los Angeles 

(Received 31 October 1968 and in revised form 20 July 1970) 

The investigation by Hayes (1964a) of the behaviour of a constant-density 
inviscid rotational flow in the neighbourhood of a stagnation point on a plane 
wall has been extended to include the effects of viscosity. The principal effect is 
the manner in which the singularity in vorticity discovered by Hayes is removed. 
A solution of only the boundary-layer equatiosu indicates the vorticity decays 
algebraically from the wall. Application of the method of matched asymptotic 
expansions, however, shows that the difference between boundary layer and 
outer vorticity, when carried out to second order in the outer flow, does not 
contribute to an algebraic decay. These results suggest that an infinite number of 
higher-order outer terms are generated which match the algebraic terms thereby 
yielding the conventional exponential decay. Numerical results are presented 
which also support this conclusion. The main contribution of the wall shear 
stress in the immediate neighbourhood of the stagnation point is shown to come 
from the external lateral vorticity. 

1. Introduction 
In  a recent paper Hayes (1964a) investigated the behaviour of a constant- 

density inviscid rotational flow in the neighbourhood of a stagnation point on a 
plane wall. His solutions show that the distribution of lateral vorticity in the flow 
approaching the wall is amplified by stretching of vortex lines and becomes 
singular at  the wall. The purpose of this paper is to enquire into the nature of the 
corrections to the lateral vorticity components when the fluid is viscous. 

Hayes adopted the model that the lateral velocities were linear functions of 
the lateral variables; the normal velocity being a function of only the normal 
variable. He shows that the equations governing the motion of the flow split into 
two parts, one of which he calls primary and the other, secondary. The primary 
set of equations is to be interpreted as the basic flow approaching the wall; the 
secondary equations represent the convection of the lateral vorticity towards the 
wall by the primary flow. In  this sense, the secondary flow is dependent upon the 
primary flow; the primary flow, however, is independent of the secondary flow. 
The flow is characterized by the basic parameter a,, 0 6 a, Q 1, which is a 
measure of its departure from axial symmetry. For a, = 0, the flow is axisym- 
metric or almost axisymmetric (i.e. the primary flow is axisymmetric, but the 
combined primary and secondary flow may be asymmetric); for 0 < a, < 1, it is 
asymmetric; and for a, = 1, it is planar or almost-planar. In  another paper 
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Hayes (1 964b) shows that under suitable restrictions, solutions for a0 > 1 also 
exist. This case represents flow directed inward along one lateral co-ordinate 
towards the stagnation point. Along the other co-ordinate the flow is directed 
away from the stagnation point. Only one lateral component of vorticity, how- 
ever, is permitted with the vorticity decreasing as it is convected towards the 
wall. 

2. Basic equations 
We use the flow field and notation of Hayes (1964a) .  The space of interest is 

the part of the physical space with Cartesian co-ordinates (x, y, z )  for which z 2 0 
with the wall the plane z = 0. The velocity field is 

(2.1 1 
where F ,  G, H ,  and a are functions of z alone and the quantities U’ and a are the 
reference velocity gradient characterizing the normal flow and the reference 
length, respectively. The vorticity corresponding to (2 .1)  is 

(2 .2 )  

q = gU’a[F+x(H’-01) ,  G + y ( H ’ + a ) , - 2 H ] ,  

V x q = &U’[ - G’-  y(H”+a’), F’ + x(H” a’), 01. 

By inserting (2 .1 )  into the momentum equation, and setting the curl of the 
pressure gradient identically equal to zero, Hayes derives the following set of 

( 2 . 3 a )  equations: 

R-lH” + H H ‘  - +( H‘2 + 012) = D, (2 .3b)  

R-’B’”+HF’-B(H‘-o~)B’ = M ,  ( 2 . 3 ~ )  

R-lG“ + HG‘ - i(B’ + a)G = N ,  (2 .3d )  

where A ,  D ,  M ,  and N are constants and R = U’a2/v is the Reynolds number. 
We call, following Hayes, the solutions to (2 .3a ,  b )  the primary flow and the 
solutions to (2 .3c ,  d )  the secondary flow. 

R-l01” + Ha’ - H’a = A ,  

3. The effects of viscosity 
In  considering the viscous corrections, we follow the procedure described by Van 

Dyke (1964)  and solve the problem in terms of matched asymptotic expansions. 

3.1. The outer expansion 

It is well known that stagnation-point flow solutions are local in the sense that 
they are valid only in the immediate neighbourhood of the stagnation point. 
Thus the question of how the external flow specification arises cannot be asked. 
It follows from this that in considering the viscous corrections, the external flow 
should be specified in as simple a manner as possible. 

With this viewpoint we seek solutions subject to the constraint that the 
primary external flow be irrotational. This means that the higher-order terms of 
the inviscid solutions to H ,  01, F ,  and G found by Hayes (1964a)  can be ignored. In 
addition, other higher-order terms, due to local body curvature, discovered by 
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Boger & Ludford (1967) [see also Boger 19661 will also be ignored. By avoiding 
the complications arising from the existence of these higher-order terms, we 
simplify considerably the solution to the external flow. 

The form of bhe outer expansion has been suggested by Hayes who showed the 
first-order inner flow to be boundary layer in character. Thus, the correction to 
the basic external flow arises from the displacement thickness of the boundary 
layer which is known to be proportional to R-4. We anticipate this by introducing 
a displaced outer co-ordinate 

where /3 is the boundary -layer displacement thickness of the primary flow. 
Keeping the quantities H’, a, F ,  and G invariant with respect to this transforma- 
tion, the form of the equations describing the outer flow is identical to the 
equations ( 2 . 3 ~ - d ) .  

We expand the outer variables in powers of e2 = R-l where now the f i s t  term 
represents the combined basic inviscid flow and the correction due to the 
boundary-layer displacement thickness, 

H(z’; R)  = H1(zr) + e2H2(z‘) + . . ., ( 3 . 2 ~ )  

a(d ;  R) = A,(z’) + E,A,(z’) + . . . , (3 .2b)  

F(z’;  R) = F,(z’) +E’F,(z’) + . . . , ( 3 . 2 ~ )  

G(z’; R )  = G,(z’) + “G,(z‘) + . . .. ( 3 . 2 d )  

The equations describing the outer flow are obtained by substituting (3 .2a-d)  
into ( 2 . 3 a - d )  and collecting the coefficients of the various powers of E .  To second 
order, the equations are: 

Z’ = z -/3R-l, (3 .1 )  

First order H,A;- H i A ,  = A ,  

H1Hi-&[(H;)2+A:] = D, 

HIFi - i (Hi -A1)F l  = M ,  

H,G;-&(H;+Al)Gl= N .  

Second order 

( 3 . 3 a )  

(3 .3b )  

(3 .3c)  

( 3 . 3 4  

H,A;-H;A, = -H,A;+H;A,-A‘;, ( 3 . 4 ~ )  

H,H; - H;H; + HiH, = A, A ,  - HT,  (3 .4b )  

H,F;-&(H;-A,)F2 = H,F;-&(H;-A,)Fl-F;, (3 .4c )  

H1G; - $(Hi  + A,) G, = - H,G; - &(Hi  + A,)  GI - Gi. ( 3 . 4 4  

3.2.  Outer flow solutions 

First order (basic inviscid flow). Equations (3 .3a -d )  must satisfy at  the dis- 

H;(O) = 1, A,(O) = a0, Fl(0) = Gl(0) = 0. ( 3.5 a-d) 

The only solution to (3.3a-d) that both satisfies these boundary conditions and 
restricts the primary flow to be irrotational is given by 

placed wall zr  = 0 the boundary conditions 

H,(z’) = z‘, A,($) = a,, F1(z’) = fO~’$(l--ao),  G,(z’) = goZ‘4(l+’0), ( 3 . 6 ~ 4 )  
1-2 
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where the constants f ,  and go are arbitrary. They are determined by prescribing 
values of the secondary flow F and G at some height 2; above the displaced wall. 
The constants A ,  D, M ,  and N ,  evaluated by inserting the solution given by 
(3.6) into (3.3),  are 

A =a,,  D =  - - (  l+a;), M = N = 0. ( 3.7 a-d) 

Equation (3.6) represents a special case of Hayes’ (1 964 a) more general solution. 
It is valid for 0 < a, < 1.  In  the following analysis, we restrict the solutions to 
values of a, given by 0 < a. < 1. 

It is worth noting, however, that by making suitable restrictions, Hayes (1964 b )  
shows that a solution for the case a, > 1 also exists. Here the flow along the 
x co-ordinate is directed inward towards the stagnation point; along the y co- 
ordinate, the flow is directed outward away from the stagnation point. For this 
ease, however, the constant f, = 0, otherwise the solution to ( 3 . 6 ~ )  would not 
satisfy the boundary condition given by ( 3 . 5 ~ ) .  The primary solution is equiva- 
lent to the case c < 0 discussed by Davey (1961) where the flow streamline 
pattern has a saddle-point behaviour at  the displaced wall x’ = 0. 

Xecond order. The solution to ( 3 . 4 ~ - d )  that satisfies the constraint that the 
primary flow be irrotational is 

A,(z’) = 0, ( 3 . 8 ~ )  

H2(z’) = 0, (3 .Sb)  

(3.Sc) F2(z’) = - $( 1 - a;)fnz’-4@+a0) + F,&(l-ao), 

G,(z’) = - $(I - a;)go2’-4(3-ao) + Go~’4(1+ao). (3 .8d)  

The constants F, and G, are related t o  the second-order outer vorticity distribu- 
tion. A description of such a vorticity distribution is beyond the scope of this 
paper, hence the constants are unspecified. 

3.3. The inner expansion 

To investigate the inner solution, we introduce the usual stretching of the (un- 
shifted) normal co-ordinate z and the normal velocity H ,  while keeping the lateral 
co-ordinates and the lateral velocities invariant, by the transformation 

7 = Rhz and H ( 7 )  = R : H ( z ) .  (3.9~5, b )  

With the equations of motion transformed, we expand the velocities in terms of 
powers of e = R-4 where the leading term in the expansion represents the 
boundary-layer solution. The form of the inner expansion is suggested by re- 
writing the outer solutions in inner variables (i.e. x’ = ~ ( 7  - p) )  and expanding 
for large R. 

Thus, the inner expansion is written 

H ( 7 ; R )  = hd??)+...’ (3.1 0 a )  

a(71;R) = a l ( r )+  ..., (3.10b) 

(3.1 Oc) 

(3.10d) 

F ( 7 ; R )  = ef(l-%)f ( 7) + e4(5-ao!f2(7) + . . . , 
G ( 7 ; R )  = &l+ao)g 1 ( 7) + €f(5+a0)gz(7)  + . . . . 
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What is new here is that the inner expansion is characterized by fractional 
powers of e instead of the usual integer powers. The fractional powers are repre- 
sentative of the three dimensionality of the flow approaching the wall. Recall 
that for a. = 0, the flow is symmetric, or almost symmetric and that for a, = 1, 
the flow is planar, or almost planar. 

The boundary conditions at the wall are the usual no-slip conditions 

h(0) = h‘(0) = a(0)  = f ( 0 )  = g(0) = 0. (3.11 a-e) 

The remaining boundary conditions far from the wall are to be determined by 
matching to the outer flow. 

Substituting these expansions into (2.3) and collecting coefficients of the 
various powers of E yields the following set of equations to second order: 

Pirst-order (boundary-layer) equations 

a’;+hla;-h;a,+a0 = 0, ( 3 . 1 2 ~ ~ )  

( 3.12 b )  

f;+h,f;-*(h;-ol,)f, = 0, ( 3 . 1 2 ~ )  

9’; + h,g; - $(hi + a,)g, = 0. (3.12d) 

h:’ +h,h; - +[(h;)z+a;] + Q(1 +a;) = 0, 

Second-order equations f ;  + h,f;; - $(hi - (3.13 a )  

g’; + h,gL - $(hi + a,)g, = 0. (3.13b) 

3.4. Matching of inner and outer expansions 

We will now investigate the asymptotic behaviour of the inner and outer ex- 
pansions to ensure that the assumed form of the expansions given by (3.2) and 
(3.10) are compatible. 

Pirst-order (boundary-layer) equations. The asymptotic behaviour of the 
primary flow is well known. The inner solutions decay exponentially to their 
outer behaviour with the form 

h,(r) - T-P+exp and a,(?) N ao+exp. (3.14a,b) 

Here p is the boundary -layer displacement thickness. The asymptotic behaviour 
of the secondary flow, however, is not so well known. Replacing h, and a, for 
large 7 by (3.14a,b), the equations describing the motion of the secondary 
velocities become 

f’;+(7-P)f;-$(1-ao)fl = 0 and g ’ ; + ( ~ - ~ ) g ~ - $ ( ~ + a o ) g l  = 0. (3.15a,b) 

To investigate the asymptotic behaviour of (3.15a, b ) ,  we transform them to 
confluent hypergeometric differential equations by introducing the transfor- 

(3.16) mation 

Equations (3.15 a, b )  are transformed to 

6 = - $(q -py.  

~~;+($-5 ) f ;+g( l -a , ) f l  = 0 and ~ g s ; + ( ~ - 5 ) g ; + t ( 1 + a , ) g l  = 0, (3.17a,b) 
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where f, and g ,  are invariant under the transformation. Their asymptotic be- 
haviour is given by Slater (1964), for 0 < a. < 1, as 

f,(r) N C,qH-"ql- -( 1 - ao)P7-1 - *( 1 - a:) (1 + P2))r-, + O(y-3)] + exp (3.18a) 

and 

gl(y) - C,$(l+a~)[l-&(l +ao)Py-l- t (1-a: )  (1+P2)r-2+O(7-3)]+exp, (3.18b) 

where the constants C, and C, are to be determined by matching to the first- 
order outer flow. 

Upon matching the outer behaviour of the first-order inner solution to the 
inner behaviour of the first-order outer solution, the constants C, and C, become 

C, = fo and C, =go. (3.19a,b) 

Second-order sohution. To investigate the asymptotic behaviour of the second- 
order secondary velocities, we replace h, and a, for 7 sufficiently large, by ( 3 . 1 4 ~ ~ )  b )  
to yield the simplified second-order equations 

f';;+(r-P)f;-*(1-ao)fi = 0, (3.20a) 

s;+(r-P)g;-&(l+ao)g, = 0. (3.20b) 

The asymptotic behaviour of the secondary solutions is precisely the same as 
the first-order solutions given by (3.18a) b)  except for a redefinition of the con- 
stants of integration. Upon matching the outer behaviour of the two-term inner 
solution to the inner behaviour of the two-term outer solution, the constants are 
found to be equal to the constants Fo and Go defined by (3 .8c)d) .  

3.5. Asymptotic decay of the viscous flow 
An examination of the asymptotic behaviour of the secondary flow indicates that 
it appears to decay algebraically from the wall. We will show, however, that the 
inner behaviour of the higher-order outer terms match to the outer behaviour of 
the inner terms to yield the conventional exponential decay. To show this, we 
will consider in detail the asymptotic behaviour of the first-order secondary 
velocity fi(r; R). The other term gl(y; R) can be shown to decay exponentially 
in a similar manner. 

The outer behaviour of f,(q;R) is given by (3.18a). The inner behaviourofthe 
outer flow is determined by rewriting the outer flow in inner variables and ex- 
panding for large Reynolds number. The outer flow, determined from (3 .2c ) ,  
(3.6c),  and ( 3 . 8 ~ )  where E = R-4, is 

p(z; R) = foz'4(1-ao) + @[ - &( 1 - ag)foz'-t(3+=0)+ p 0 z'%~-=o)]. (3.21) 

Rewriting (3.21) in inner co-ordinates (i.e. z' = ~ ( 7 - P ) )  and retaining only the 
leading terms results in 

Comparing (3.22) with (3.18a) shows that thedifference between the boundary- 
layer and outer secondary velocity, when carried out to second order in the outer 



Viscous rotational stagnation-point flow 7 

flow, decays exponentially. Although we have not proved that all the terms in 
(3.18a) match asymptotically to higher-order outer terms, the analysis suggests 
that they do. 

The results of this study are in agreement with the results reached by Conti 
& Van Dyke (1969) in a related study. They considered reacting flow near a 
blunt stagnation point where the inviscid flow has a general algebraic type of 
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FIGURE 1. Velocity and vorticity profiles for the case a,, = 0. 

0 

singularity. They showed that the apparent algebraic decrease in vorticity in the 
second-order boundary layer precisely matches a corresponding behaviour in 
the second-order outer flow. Thus, they found that the difference between 
boundary layer and outer vorticity, when carried out to second order in the 
outer flow, does not contribute to an algebraic decay. 

4. Numerical results 
Numerical solutions to the primary and secondary boundary-layer equations 

were obtained using a Runge-Kutta integration procedure accurate to four 
decimal places. Results valid for a. = 0,0.3, and 0-5 are presented in figures 1 to 3. 
It is evident that the primary solutions decay exponentially to their outer values 
with a strong dependence upon ao. The sensitivity to a,, is clearly illustrated in 
figure 4 which shows the behaviour, with a,, of the displacement thickness /?. 

The numerical results also suggest that the asymptotic behaviour of the 
secondary flow decays exponentially to its outer values. To show this we have 
plotted in figure 5 the 1-term and the 3-term outer expansion rewritten in inner 
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FIGURE 2. Velocity and vorticity profiles for tho case cco = 0.3. 
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FIGURE 3. Velocity and vorticity profiles for the case a. = 0.5. 
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variables from (3.22) for the case a, = 0. The constant df,, was selected to match 
the 3-term outer expansion to the inner numerical solution at 7 = 40. The 3-term 
outer expansion appears to match quite satisfactorily to the inner solution for 
7 > 2. The 1-term outer expansion, however, appears to match to the inner 
solution only for extremely large values of 7. Thus the 1-term outer expansion 
suggests an algebraic decay while the 3-term outer expansion suggests an 
exponential decay. These conclusions are consistent with the conclusions of 9 3.5. 

a0 

FIGURE 4. The behaviour of the primary flow displacement thickness with a,. 
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FIGURE 5.  Matching between th0 inner and outer secondary solutions €or the case z,, = 0. 
-, numerical solution; - - -, 1-term outer expansion; - - - , 3-term outer expansion. 
The 3-term outer expansion is indistinguishable from the numerical solution for > 2. 
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It is of interest to consider the individual contributions to the wall shear stress 
from the primary and secondary flows. The skin friction coefficients in the x and y 
directions are defined as 

and 

where only the leading (boundary-layer) terms in the expansion for h, a, f ,  and g 
have been retained. It is evident from (4.1) and (4.2) that in the immediate 
neighbourhood of the stagnation point, the majority of the shear stress comes 

a 0  

FIGURE 6. The behaviour of the primary flow wdl shear stress with m0. 

from the secondary flow. Moreover, the shear stresses are strongly dependent 
upon the parameter a,. The relationship between the primary shear stresses at  
the wall with the parameter a, is shown in figure 6. An equivalent unique rela- 
tionship for the secondary flow is not possible because their equations are linear, 
hence the shear stresses are proportional to their outer values. It is for this reason 
that the secondary shear stresses a t  the wall 7 = 0 have been normalized to 
unity. 
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